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ABSTRACT 

This publication presents a novel multistage estimation scheme for estimating the 

parameters of a received carrier signal possibly phase-modulated by unknown data, and 

experiencing very high Doppler, Doppler rate, etc. Such a situation arises, for example, 

in the case of Global Positioning Systems (GPS) where the signal parameters are directly 

related to the position, velocity, acceleration and jerk of the GPS receiver. 

In the proposed multistage scheme, the first stage estimator operates as a coarse 

estimator resulting in higher rms estimation errors but with a relatively small proba- 

bility of the frequency estimation error exceeding one-half of the sampling frequency 

(an event termed cycle slip). The second stage of the estimator operates on the error 

signal available from the first stage, refining the overall estimates, and in the process 

also reduces the number of cycle slips. The first stage algorithm is selected to be a 

modified least squares algorithm operating upon the differential signal model and re- 

ferred to as differential least squares (DLS). This estimation stage provides relatively 

coarse estimates of the frequency and its derivatives. The second algorithm is simply 

an extended Kalman filter (EKF) which also yields the estimate of the phase along with 

a more refined estimate of frequency as well. 

A major advantage of the proposed algorithm is a reduction in the threshold on 

received carrier power-to-noise power spectral density ratio (CNR) as compared to the 

threshold achievable by either of these algorithms alone. In fact, it appears from the 

simulations that for the case of an unmodulated carrier, the proposed scheme achieves 

the same threshold as for an almost exact and computationally intensive implementation 

of the maximum likelihood estimator (MLE). For the case when data modulation is 

present, the proposed scheme provides an improvement of about 6 dB in terms of CNR 

compared to an earlier MLE scheme reported in the literature. The overall complexity 

of the algorithm is about two times the complexity of a third-order Kalman filter or a 

single fourth-order EKE 
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1. INTRODUCTION 

The problem of estimating the parameters of a received quasi-sinusoidal signal in 

the presence of noise occurs in diverse scientific and engineering disciplines [1-15]. The 

signal parameters of interest are usually the phase, frequency and frequency deriva- 

tives which are varying with time. The estimation problem becomes considerably more 

difficult if the received carrier is modulated by unknown data while simultaneously 

experiencing very high Doppler and Doppler rate. Such situations occur, for exam- 

ple, in the cases of Global Positioning System (GPS) receivers and NASA deep space 

communication links under high spacecraft dynamics. 

In a previous publication [7], an estimator structure based on the maximum like- 

lihood estimation (MLE) of code delay and Doppler frequency over a single data-bit 

period has been proposed and analyzed for the GPS applications. This scheme esti- 

mates Doppler frequency (assumed constant) over successive intervals of bit periods, 

followed by a Kalman filter tracking Doppler frequency and frequency rate. The scheme 

does not involve the carrier phase estimation. For the dynamic trajectories simulated in 

[7], the approximate ML estimator performance exhibited a threshold of about 30 d R  

Hz in terms of the received carrier power-to-noise power spectral density ratio (PI”), 
below which rapid performance deterioration occurred. 

For GPS applications, an alternative scheme has been proposed [81 wherein a par- 

allel (non-dynamic) link is established between the GPS satellites and a control ground 

receiver for the purpose of communicating the data to the ground receiver. The ground 

receiver simultaneously receives the frequency-transla ted version of the GPS receiver 

signal and removes the data modulation from this dynamic signal. Such an effectively 

demodulated signal is then processed by the estimation algorithm to obtain the desired 

signal parameter estimates. There are several estimation schemes in the literature for 

this problem. See for example [9-141. 

More recently in [9] a scheme for simultaneous detection and estimation has been 
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proposed. This scheme is based upon first estimating the received signal's local (data 

dependent) parameters over two consecutive bit periods, followed by the detection of 

a possible jump in these parameters. The presence of the detected jump signifies a data 

transition which is then removed from the received signal. This effectively demodu- 

lated signal is then processed to provide the estimates of the global (data independent) 

parameters of the signal related to the position, velocity, etc., of the receiver. A key 

feature of this scheme is that to a certain extent the data detection is independent of 

the acquisition of the phase or frequency of the received carrier signal in contrast to the 

conventional decision-directed phase-locked loop receivers. In these latter receivers, the 

data detector is an integral part of the loop and depends upon the acquisition of the car- 

rier phase and/or frequency. Thus, under low CNR and/or high dynamic conditions, 

the loop may not acquire lock or frequently lose it during tracking. From the simula- 

tions of [9], it is seen that the scheme offers very significant improvement in terms of 

the required CNR over the AMLE algorithm of [7]. The detection-estimation scheme of 

[9] has a computational complexity about three times that of a single extended Kalman 

filter. 

In this publication we propose an alternative scheme for the estimation of the signal 

parameters applicable for both the cases of unmodulated carrier and when the signal is 

phase-modulated by unknown data. The proposed scheme is somewhat simpler than 

that of [9] in that it is not essential to detect the data modulation explicitly. Basically the 

proposed algorithm involves an appropriate modification of the DLS scheme of [ll] so 

as to apply the algorithm to the case of unknown data modulation. As discussed in [Ill, 

if the DLS technique is applied with the Nyquist sampling of the received signal, there 

is expected a loss in performance compared to the optimum achievable performance. 

The techniques of [ll] propose oversampling and cyclic sampling strategies to avoid 

such a loss. In the present example of GPS application, we sample at Nyquist rate and 

propose an alternative method to keep the overall performance close to optimum. The 
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technique proposed here consists of a multistage procedure wherein the parameters of 

the signal are estimated in more than one stage. First, the parameters are estimated by 

an algorithm like DLS which has a low threshold on CNR but with possibly higher rms 

estimation errors. Then an error signal whose parameters are equal to the difference 

between the true parameters and the above estimates is processed by another algorithm 

to estimate these error signal parameters. Since the error signal involves much smaller 

dynamics, the second algorithm can have smaller bandwidth resulting in a smaller 

estimation error. In principle, this procedure can be repeated any number of times with 

successive algorithms having progressively lower bandwidths. 

In this publication we confine ourselves to two stages of recursion and apply a 

third-order extended Kalman filter algorithm for the second recursion. It is expected 

from such an estimation structure that the overall algorithm would have both smaller 

threshold and a smaller estimation error compared to either algorithm operating by 

itself. Indeed, this is borne out by simulations presented in the publication. Thus, for 

the case of no data modulation, whereas the threshold on SNR is about 1.5 dB lower than 

the extended Kalman filter, the estimation errors are only marginally higher than for the 

third-order EKF alone. The threshold achieved is in fact the same as that achieved for 

a nearly exact implementation of the maximum-likelihood estimator (MLE). It is also 

noted that the threshold achieved by the proposed scheme is about 3 dB lower than 

conventional cross product AFC (CPAFC) loops and phase-locked loops [ 141, whereas 

the rms error is less than one-half of that obtained by CPAFC. The rms error is marginally 

higher than EKF due to the non-optimal sampling used in the DLS algorithm. 

For the case of data modulation, we compare our results with those of [a, where 

analysis and simulations are presented on the performance of Fast Fourier Transform 

(FFT) based MLE algorithm. In [7], the trajectories of the GPS signals have somewhat 

less severe dynamics compared to those considered in this publication. In terms of 

threshold on CNR, the proposed scheme of this publication exhibits a threshold of 24 
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dB-Hz compared to about 30 dB-Hz reported in [7], thus providing an improvement of 

about 6 dB. In terms of the rms frequency estimation errors, at a 30 dB-Hz CNR, the 

scheme of [7] provides a rms range rate error of about 6 m/s compared to an error of less 

than 2 m/s achieved in this publication. There is also a very significant improvement in 

terms of the rms position estimation error. At about 30 dB-Hz an rms error of 1 meter 

is reported in [7], compared to about 0.25 meter obtained by the proposed algorithm. 

It may also be remarked that in the previous scheme, pseudo-random codes with rate 

10.23 MHz are needed for the purpose of range measurements, thus requiring a zero- 

crossing channel bandwidth in excess of 20 MHz. The proposed scheme, on the other 

hand, extracts the range information from the carrier signal itself and thus needs a 

bandwidth equal to only a fraction of 1 MHz. 
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2. THE RECEIVER CONFIGURATION 

We consider the problem of estimating the high dynamic phase process @,(t) of the 

desired signal sr( t )  observed in the presence of an additive narrow-band noise process 

~ ( t )  as 

In (1) W, is the received signal carrier frequency in the absence of any dynamics and 

~ ( t )  is a binary digital waveform taking on the possible values of 0 or 1. In the case 

of a Global Positioning System (GPS) receiver, the process sr(t) arises from the receiver 

dynamics, and over a sufficiently small estimation period, 

for some unknown parameter vector $ro = [ero wI0 7 1 0  bra]'. In a somewhat simpler version 

of the problem, the data modulation ~ ( t )  is either absent or is assumed known and thus 

can be eliminated from (1). In the sequel both of these cases would be treated in some 

detail. 

In the first instance we only estimate the parameters related to the frequency and 

its derivatives using the DLS algorithm. For this purpose, the received signal rr ( t )  is 

quadrature demodulated by the voltage-controlled oscillator (VCO) signal sL( t )  as shown 

in Figure 1. We assume that the input to the VCO is a signal which is an appropriate 

quadratic function of time t resulting in its instantaneous phase @,(t) in (3) below. 

S L ( t )  = 2Cos(w,t + OL(t ) )  

oL(t) = eto + wtot + yLot2 + h o t 3  
(3) 

for some constant vector $Lo = [eLo wL0 7 L o  bLO]’. The sampled version of the in-phase 

and quadrature components of the demodulated signal are given by 
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y(k) = ASin(O(k)  + r D ( k ) )  + vj(k) 

z(k) = ACos(O(k) + nD(k))  + v , (k)  ; k = 1 , 2 , .  . . , N 
(4) 

where 

O ( k )  = @i(k) - @ ~ ( k )  = 60 + wokT' + 7 0 ( k T ) ~  + 60(kT, )~  

A 
$0 = $10 - $LO = [Bo wo 70 601' 

and $o is the parameter vector characterizing the error signal to be estimated, with T, 

denoting the sampling interval. In (4) v i ( k )  and ~ , ( k )  represent the sampled in-phase and 

quadrature components of the bandpass noise process vr(k). The parameter vector $o is 

estimated by the Differential Least Squares (DLS) algorithm of [ll], as described in the 

following section. 
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3. DIFFERENTIAL LEAST SQUARES (DLS) ALGORITHM 

Consider first the problem of estimating the unknown parameters w0, 70  and bo from 

0. Following the measurement (4) for the case of no data modulation, i.e. when ~ ( k )  

[HI we expand S i n ( ~ ( t ) )  in a Taylor series around tk-l  = (k - 1)T' to obtain 

Sin(O(t)) = Sin(O(k - 1)) + T6(k  - l)Cos(O(k - 1)) + . , . (5 )  

with a similar expansion for Cos(O( t ) ) .  For small ( t  - t k - l ) ,  the series in (5) may be 

approximated by the first two terms and from (4) one obtains the following differential 

signal model with rk = (k - $)T,: 

where 

0' = ['&I 270 6601 

(9) 
T'z(k - 1) T,T~z(~ - 1) 0 . 5 T ' ~ : ~ ( k  - 1) ] 

- z y ( k  - 1) -T#T,tV(k - 1) -0.5 T$T;V(k - 1) 

ZA(k) = [ Y d ( k )  z d ( k ) ]  ;<'(k) = < q ( k ) l  

The parameter vector p in (8) is now estimated by an exponential data-weighted least 

squares algorithm in a recursive or nonrecursive form (Kalman filter). In its nonrecursive 

form the estimate of p obtained on the basis of N measurements and denoted by p ( N )  

is given by 
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where x is some appropriate weighting coefficient with o < A < 1. An equivalent recursive 

form of (10) is the following algorithm: 

P ( k )  = b(k - 1) + L ( k ) r ( k )  

L ( k )  = P(k  - l ) H ( k ) [ X l  + “ ( k ) P ( k  - l ) H ( k ) ] - l  

P ( k )  = { P ( k  - 1) - P(k - l ) H ( k ) [ X I  + ” ( k ) P ( k  - 1) 

€(k) = Z d ( k ) - ” ( k ) p ( k -  1 )  ; k =  1 , 2 ,  ..., N 
I 

Note that the matrix to be inverted in (11) is only a (2 x 2) matrix. In an alternative 

but equivalent form one may process the scalar measurements yd(k), zd(k) sequentially 

instead of working with vector measurement Zd(k). Moreover, the matrix P ( k )  of (11) 

with k = N is the same as the matrix inverse in (lo), i.e., 

k 
P--’(k) = H ( j ) H ’ ( j ) P j  

j = 1  

Alternatively, the matrix ~ - ‘ ( k )  may be written as 

k 

P- ’ (k)  = CP-j{2(j) + y y j ) } B j T ; ; B j  e ( 1 3 )  

and thus the matrix ~ ( k ) ~ ( k )  required in the update of ~ ( k ) ,  and equal to ~ ( k )  in (11) 

may be approximated by 

j = 1  rj” rj” rj’ 

where 



In (14) the vector ~ ( t )  is data independent and thus could be precomputed for t = 

1,2,. . . , N for computational simplification of (11). Similarly, in the implementation of 

(lo), the first matrix may be replaced by the data independent matrix (E XN-jBj)(A2 + 
a:)T:. 

N 

j = 1  

Modified Least Squares Algorithm 

If the noise t ( t )  in the signal model (8) were white, then the estimate & N )  obtained 

from the algorithm (10) or (11) would approach 0 as N + 00, if one ignores the approx- 

imation made in arriving at model (8) and A is selected equal to 1. However, as the 

noise [ ( t )  in the model (8) is colored, there would be considerable bias in the parameter 

estimates under low to medium signal-to-noise ratios. To reduce such a bias or pos- 

sibly eliminate it we propose the following simple modification. If the instantaneous 

frequency W ( Q )  at time T~ given by (w0 + 2 7 0 ~  + 3 6 0 ~ z )  appearing in (7) is small compared 

to I/T@, then the noise vector [(k) is equal to ~ ( t )  - ~ ( t  - 1) where ~ ( k )  e [wi(k)w,(k)]’. This 

situation may be depicted by Figure 2a. 

To eliminate the bias, the noise e ( t )  must be whitened by passing through the trans- 

fer function (1 - z-l)-l as shown in Figure 2b. The least squares algorithm is, in general, 

nonlinear and time-varying. However, if we assume that the algorithm in (11) asymp- 

totically approaches a time-invariant system, then under such an assumption, one may 

interchange the least squares algorithm with the transfer function (1 - z-l)-l to arrive 

at Figure 2c. This, of course, corresponds to post-averaging the least squares estimates. 

Such a simple procedure provides very significant improvement in the estimates when 

the signal-to-noise ratio is low. In the simulations of the next section, the infinite time 

averaging is replaced by an exponentially data-weighted averaging to take into account 

the time variation of the parameters to be estimated. In Figures 2b and 2c, juB denotes 

an unbiased estimate of p. 
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DLS Algorithm in the Data Modulation Case 

In this case the data samples ~ ( k )  in the signal model (4) may take possible values 

k l  and the received signal may equivalently be written as 

y(k) = D(k)ASin(O(k)) + V i ( k )  

z(k) = D(k)ACos(O(k))  + ~,(k) ; k = 1,2,. . . , N 

Thus, as may be easily verified, over any bit interval Tb, where D(k)  remains constant, 

the differential model (6) remains valid irrespective of the value of ~ ( k ) .  The model (6), 

however, is not applicable for those samples which lie on the bit boundaries, i.e., when 

~ ( k )  and ~ ( k  - 1) lie in different bit intervals. A simple modification of the algorithm to 

take care of the data modulation case is to simply discard such differential samples. If 

the number of samples M over any bit period is fairly large, this would incur a negligible 

loss in the effective signal-to-noise ratio compared to the case of no data modulation. 

In fact, such a loss is simply equal to 10 loglo(l - +) d B  which is 0.45 dB for M = 10. This 

is corroborated by the simulations of the next section. 

Estimation of Time-Varying Parameters 

In the signal model considered above we have assumed that the input signal pa- 

rameter vector is either a constant or a slowly varying function of time. However, 

in practice this may be the case only over relatively short intervals of time, but there 

may be large variations in qro over a comparatively large observation period. To take 

into account such a variation and to ensure that the instantaneous difference frequency 

~ ( t )  = -@(t) (the sampled version of o(t) given in (4))  remains within the low-pass filter- 

pass band of Figure 1, the parameter vector qL0 generating the instantaneous frequency 

of the VCO is updated at regular intervals of T = NT, sec for some integer N .  The pa- 

rameter vectors qI, $Lo and ?,bo would change their values at intervals of T sec, assuming 

that the value of N is selected to be sufficiently small so that the variation in $I over 

any T sec interval is small. Denoting by BLo(T+),wLo(T+), etc., the values of reference 

10 
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oscillator parameters just after the update at time T, we have that 

1 

I 
I 

I 

I/ 
I 

I 

I 

I 

I 

bLO(T+) = A,o(T-) + jo(O/T) 
In equation (161, o L o ( ~ - ) ,  n L o ( ~ - ) ,  etc., represent the oscillator instantaneous phase, 

frequency, etc., just before the correction and the remaining terms on the right-hand 

side of (16) represent the correction made on the basis of the estimation algorithm. 

Thus, 

= eL0(o+) + u L O ( o + ) ~  + ~LO(O+)T~ + ~ L ~ ( o + ) T ~  

ALO(T--) = bLO(0-t) 

Note that in (16) there is no correction in the oscillator phase as the DLS algorithm 

does not provide the phase estimate. In equation (16), b0(o + /T) denotes the estimate 

of parameter w0(o+) obtained on the basis of measurements up to time T. Since there 

is no step change in the oscillator phase, the sampled measurements V ( N )  and Z ( N )  at 

the demodulator output are the same with or without a correction at the instance NT,. 

However, the subsequent measurements Y ( N  + j )  and Z ( N  + j )  are now expressed with 

respect to the new parameter vector lCIo(T+) = [eo(T+) wo(T+) 70(T+) 60(T+)1' = lCIro(T+) - 

lCILo(T+) as in (18) below. 

A 

@ ( N  + j) = eo(T+) +wO(T+)jT8 + ?.0(T+)(jT8)2 + 60(T+)(jT8)3 
The last three elements of the vector ~ c I ~ ( T + )  will be zero if there is no change in the 

input signal parameters over the T sec interval and the estimate of 1cl0(o+) is obtained 
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with zero estimation error. We thus set the a-priori estimate of the vector $ o ( ~ + )  equal 

to 0 and apply the DLS algorithm to estimate l c lo(~+)  on the basis of observations {Y(N+ 

j ) ,  Z ( N  + j ) ; j  = 1 , .  . . , N}. The measurement model is obtained by simply replacing the 

index k by k + N in ~ ( k ) ,  ~ ( k ) , & ( k ) , < ~ ( k )  in equations (6-9) but with Tk = (k - +)Ts as before 

(corresponding to a shift in time reference). 

In the estimation of l c lo(~+)  via the recursive algorithm (11) with the index k = N + 
1,. . . , 2 ~ ,  the ”initial” covariance matrix P(N + 1) is obtained as 

P ( N  + 1) = XFP(N)F’ + Q 

where 

1 2T 3T2 
F g  [: ,l, 3 T ]  

and the matrix Q represents the uncertainty introduced due to the change in the input 

process parameters over the interval of T sec. Specifically, the last diagonal element of Q 

represents the variance of the change in the parameter 66 (equal to the second derivative 

of frequency and related to the jerk of the physical trajectory) over the interval T.  The 

above procedure is then extended in a straightforward manner to the subsequent update 

intervals. The estimates of input signal phase and frequency at time instances !T+ are 

then simply given by eLo(!T+) and U L ~ ( ! T + )  respectively for ! = 0, i , 2 , .  . .. 
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4. MULTISTAGE ESTIMATION 

We note that most of the phase and frequency estimation schemes can be repre- 

sented as in Figure 3a. The block representing the VCO correction signal could be 

any recursive or semi-recursive algorithm including an EKF or DLS algorithm, and the 

VCO update interval may be some integer multiple of sampling period T,. Figure 3b 

depicts an equivalent and a more compact representation of the estimation scheme. An 

important observation made from figure 3b is that along with the estimate of the in- 

put phase process er(t) represented by @&), there is also available a pair of signals, 

(ASinQ(t) ,  ACo&(t)) dependent upon the estimation error Q(t) = @ ~ ( t )  - @ ~ ( t ) .  These error 

signals have exactly the same form as the signals at th,e input to the estimator. Moreover, 

the additive noise associated with these signals has statistics identical with the statistics 

of the noise at the input to the estimator. Therefore, this leads to the clear possibility of 

estimating the error signal 6(t) in a way similar to the estimation of e&). In fact, the 

procedure can at least in principle be repeated any number of times as shown in Figure 

4. It may also be noted that the first estimation stage (Figure 3a) requires a VCO for 

down conversion as the actual input to this stage is at rf frequency we.  However, sub- 

sequent estimator stages generate the error signals by simple baseband computations. 

For example, in the discrete-time version of the estimation procedure, the signal at the 

output of estimation stage m may simply be computed as 

y"(k) = ym-'(k)Cos(G"-'(k - 1)) - zm-l(k)Sin(&-1(k - 1)) 
(20) 

of 

zrn(k) = yrn-l(k)Sin(&-l(h - 1)) + Z ~ - ~ ( ~ ) C O S ( W - ~ ( ~  - 1)) ; m = 2 , 3 , .  . . n 

Note that G ( t ) , ~ ~ ( t )  and ijq(t) of Figure 3b are respectively equal to el(t), v t ( t ) ,  

Figure 4. The refined estimate of O I ( h )  is then simply given by 

The advantage of such a recursive estimation procedure is that the overall threshold 
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in terms of the required CNR for the multishage estimator can be made much smaller 

than a single stage estimator, especially in situations involving high dynamics. In a 

single stage estimator, due to the high dynamics involved, the process parameters may 

be assumed to remain constant only over short intervals of time. Thus, the estimator is 

forced to use a relatively large noise bandwidth (shorter averaging period), resulting in 

large errors in the phase and/or frequency estimates. If the estimation errors are outside 

the region over which the error model (linear) assumed for the estimator remains valid, 

the estimator is said to be working below threshold or in the out-of-lock condition. In 

this condition the estimation errors can be several orders of magnitude higher compared 

to the operation above threshold. In a multistage estimator environment this difficulty 

can be circumvented by successive reduction of the dynamics (the estimation errors 

due to dynamics) at the output of consecutive estimator stages and by averaging the 

signal over progressively longer intervals (and thus progressively reducing the effect 

of noise) over which the process parameters remain nearly constant. In this estimation 

structure, none of the individual stages (except the last one) need necessarily operate 

above its threshold. For the convergence of the overall estimator, one only requires 

that the estimates are made in the right direction (estimation errors do not exceed the 

parameters to be estimated in some average sense). The proposed estimation scheme 

may look familiar if one compares it with the standard practice of weighing wherein 

the estimation proceeds from a coarse estimate to a successively refined one thereby 

achieving high estimation accuracy with a comparatively less complex setup. Similar 

approaches, variously termed method of successive approxima tion, method of sieves, 

and so on, are also common in various mathematical disciplines including theory of 

differential equations, probability theory, etc. 
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5. RECURSIVE DLS-EKF ALGORITHM 

In this publication we consider a simple special case of the more general multistage 

estimator of Figure 4, wherein the first stage is the DLS algorithm of the previous section 

and the second stage is an extended Kalman filter (EKF). As the dynamic variation of 

the error signal 8 ( k )  = @(k) of Figure 4 is much smaller compared to the original signal 

@(k) (the frequency variation over any update interval is much smaller), the effective 

averaging time period for the second-stage Kalman filter can be selected to be higher 

than for the first stage DLS algorithm. This is achieved by selecting a smaller value 

of the "dynamic noise" covariance matrix Q (see equation (19)) for the EKF and/or a 

higher value for the exponential data weighting coefficient A. 

Extended Kalman Filter (EKF) Algorithm 

Here we consider the problem of estimating the unknown error signal parameters 

u0t, yof and bot in the eth VCO update period for any integer e 2 1 on the basis of the set 

of measurements {$(k), ~ ' ( k ) }  of equation (22) below (see also Figure 4) by an EKE 

Note that as for the DLS algorithm the parameter vector = [e, w0t y0t bot]' may 

be different over different VCO update intervals. For computational simplicity we use 

a third-order EKF and thus ignore the contribution of the last term in the expression 

for @(k) which is appropriate for the GPS trajectories considered here. Denoting the 

state and parameter vectors at time L = N(!  - I) + j by ?+ht(j) and qf respectively, i.e., with 

+ ( j )  = [I jT, 0.5(jT,)2]', qt = [eot wOt 270t]t, the extended Kalman filter equations for 

the update of el, the estimate of qf, are given by 
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W )  = 6f(j - 1) + I(f(j)Vt(j) 
K t ( j )  = C,cj - l ) + ( j ) ( X  + +'(A C,(j - l)+(j))--l 

C,(j) = {C,(j - 1) - C,(j - l > + ( j > [ X  + +'(d C,Cj - 1 ) + ( W + ' ( d  C,(j - 1))/X (23) 

W ( j )  = Y ' ( ~ ) C O S ( & ( j ) )  - % ' ( k ) W & ( j ) )  

& ( j )  = +'( j ) f j f ( j  - 1) ; k = ( e  - 1)N + j ; j = 1,2.. . , N ;  e = 1,2,. . . 
In the equations (23) above, the initial estimate $ t ( ~ )  is simply taken to be equal to 

f j t - ' ( ~ ) .  This is an appropriate choice for the initial estimate in view of the fact that if 

the first stage of the estimation algorithm is convergent then qf would be random and 

remain close to zero for all e. However, if the errors in the previous stage are not close 

to zero, then the components of qt would possess some continuous drift term, i.e., wof 

will have a component linear in time if yoL # 0. The "initial error covariance" matrix 

cL(o) is simply set equal to some diagonal matrix representing the uncertainty in the 

difference parameter qt - qt - l .  

Estimation in the Presence of Data Modulation 

In this case one could apply the more sophisticated version of [9], wherein an explicit 

detection of possible data transitions is followed by the demodulation of data, thus 

effectively reducing the problem to the case of no data modulation considered above. 

However, here we bypass such a detection and instead propose a simple modification 

in the estimation algorithm that takes into account the data modulation. If the VCO 

update interval T is selected equal to bit period Tar then the data modulation represents 

an additional phase uncertainty at the boundaries of the update intervals. This is taken 

into account by adding an appropriate value, say ( ~ / 2 ) ~ ,  to the first diagonal element of 

C,(O) and modifying the initial estimate ~ ~ ( 0 )  by ~ / 2 ,  i.e., = G ~ - ' ( N )  + ~ / 2 ,  for those 

values of t that correspond to bit boundaries. Such an algorithm is expected to result in 

somewhat higher estimation errors compared to the more sophisticated scheme of [9], 

but is much simpler in terms of implementation. In this case of a two-stage estimator 
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(see Figure 4), the estimates of the input signal phase and frequency at time instances 

eT are given by 

&eT) = o L ( ( e  - l)T+) + 1L’(N)&(N) 

A(eT, = %((e - l)T+) +Got + 2TOf * (NT,) 

where hot and Tof represent the second and third element respectively of + ( N ) .  
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6. SIMULATIONS 

In the following we present simulation results obtained when the algorithm is ap- 

plied to the tracking of phase and frequency for high dynamic GPS receivers [14]. For 

the purposes of simulation we assume that the pseudo-random code has been removed 

from the received signal and symbol timing has been acquired. We consider both the 

cases when the data modulation has also been removed via an auxiliary link [8, 141 

and the case when an unknown data modulation is present. For the simulations we 

consider a sampling rate of 500 samples/second and simulate a high dynamic trajectory 

considered previously in [14] and reproduced in Figure 5. In Figure 5, the acceleration 

and the jerk (the derivative of acceleration) are measured in units of g where g is the 

gravitational constant (equal to 9.8 m/s). In the case when data modulation is present, 

we assume a BPSK modulation at  a rate of 50 bits/second. 

The parameters of most interest in this application are the instantaneous phase and 

frequency of the input signal rr ( t ) ,  which corresponds to the high dynamic GPS trajectory 

of Figure 5. Since we are mainly interested in the tracking performance of the proposed 

algorithm, we assume as in [14] that the initial trajectory parameters at zero time are 

khown. The received signal carrier frequency fc = wC/2* in the signal model (1) is taken 

to be equal to 1.575 GHz. The GPS receiver instantaneous pseudo-range R in meters and 

velocity V d  in m/s are related to the instantaneous phase Or( t )  of (1) and its derivative 

6,(t) as 

where fd denotes the Doppler in Hz and c is the speed of light. Denoting by A(!) and 

fd(!) the estimates for R(!) and fd(!) respectively, which denote the range and Doppler of 

the input trajectory at  the end of !th update interval, then the performance measures of 

the estimation algorithm are given by the following sample rms values of the estimation 
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errors: 

fd,rms L 

where L = 4000/N is the number of update intervals for the entire trajectory. These 

measures are obtained as a function of P / N ~ ,  where P denotes the received carrier power 

and N~ is the one-sided power spectral density of the receiver bandpass noise. 

At lower range of ( P / N ~ )  ratio, the receiver may lose frequency lock, in that the 

frequency errors at times may exceed f one-half of the sampling frequency f, or f 

250 Hz. Since the error signals f ( k )  of (11) are the same for frequency errors of A 

Hz as for the case of A + nf, Hz for any signed integer n, the estimator may make 

frequency estimation errors of nf, Hz. This situation may be referred to as cycle slipping 

in the frequency estimator and is akin to the phenomenon of cycle slipping (phase 

errors equal to multiples of 2n) in the phase-estimators. If there are one or more cycles 

slipped in frequency the computed value of fd,rms would be much larger compared to 

the case when no such cycle slips occur and would be unacceptable. Thus, another 

important parameter for the performance is the probability of maintaining frequency 

lock throughout the trajectory denoted P(1ock) or the probability of losing the lock 

PL = 1 - P(lock) .  For the purposes of estimating the probability by digital computer 

simulations, 100 simulation runs are made for each value of P / N ~  of interest and an 

estimate of pL is plotted vs the carrier power to noise power spectral density ratio 

(CNR). The sample rms values of (26) are also averaged over all those simulation runs 

for which the frequency lock is maintained. It may well be that for sequences that remain 

under frequency lock, there may be slipping of cycles in the phase estimates. However, 

even under the presence of such cycle slips, the computation made on the basis of (25) 

19 



provides a good estimate of the pseudo-range as evidenced by the simulations. One 

cycle slip only corresponds to an error of about 0.2 meters in the pseudo-range estimate. 

Figures 6-15 present the simulation results for the DLS algorithm and the composite 

DLS-EKF algorithms presented in the previous sections. The results for the EKF algo- 

rithm operating by itself are available in [14] for comparison. For the simulation results 

a value of A equal to 0.97 has been selected. The initial covariance matrix P(O)  for the 

DLS algorithm is selected to be a diagonal matrix, with its diagonal elements equal 

to 2 x io3, 2 x io7 and 2 x io9 respectively, reflecting the possible uncertainty about the 

parameters. Three different VCO update intervals equal to 5, 10 and 20 sample times 

have been considered. The matrix Q of (19) is also selected to be a diagonal matrix for 

convenience, with its consecutive diagonal elements equal to 4 x io3, 2 x lo6 and 10". The 

Q matrix represents possible variations in the input signal parameters over an update 

interval and is arrived at from the consideration of a-priori estimate of the maximum 

possible value of the highest order derivative (jerk) present in the input trajectory. For 

the second stage EKF algorithm, the initial covariance matrix CJO) is selected to be 

also a diagonal matrix but with its elements smaller in value than the corresponding 

elements of the Q matrix, thus effectively resulting in a higher averaging period and 

smaller estimation errors compared to the DLS algorithm. The selected values of diag- 

onal elements of C[(O) matrix are equal to 1.0, io3 and lo6 respectively, in the following 

simulations. From the simulations it appeared to be advantageous, in terms of numer- 

ical stability, to periodically reset the covariance matrix P of the DLS algorithm to its 

initial value. Such a period was selected to be 10 times the VCO update interval. 

Figures 6 and 7 present the simulation results for the performance of DLS algorithm 

while tracking the high dynamic trajectory of Figure 5 in the absence of any data mod- 

ulation. Figure 6 plots the probability of losing the frequency lock pL as a function 

of CNR for two different values of N equal to 10 and 20. As may be inferred from 

the figure, a value of pL of less than 0.1 is obtained for CNRs above 23.1 dB which 
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is defined to be the threshold point of the algorithm. Figure 6 also plots the average 

number of cycles slipped in the frequency estimation, denoted by ZC8. In defining such 

a cycle slip, the entire frequency range is divided into disjoint segments of f, Hz with 

the first segment extending from -f8/2 to f8/2 Hz. Whenever the frequency estimation 

error jumps from one such segment to an adjacent one in either direction, a cycle slip is 

said to occur. Figure 7 plots the rms error in the Doppler estimation as computed from 

(26) and averaged over all convergent sequences. For a CNR between 25 and 30 dB-Hz, 

an rms error of 10-20 Hz is obtained that corresponds to a velocity tracking error of 2-4 

m/s. Figure 7 also plots the average length Ec8 of a slipped cycle in terms of number 

of samples. The information about m e 8  and Tc8 is relevant in the case of multistage 

algorithm. Figures 8 and 9 present the results for the probability of losing lock PL and 

the rms estimation error for the DLS algorithm in the presence of data modulation for 

three different values of N equal to 5,lO and 20. As may be observed from the figures, 

the presence of data modulation increases the threshold by only 0.25-0.5 dB compared 

to the case of no data modulation. The increase in rms frequency estimation error is 

about 10% due to data modulation. 

Figures 10 and 11 present the performance of the composite DLS-EKF algorithm in 

the absence of data modulation. We observe that corresponding to N = 5, the threshold 

of the algorithm is 22.75 dB-Hz which is slightly smaller than for the DLS algorithm. 

However, the rms estimation errors are significantly smaller than for the single-stage 

DLS algorithm. For the CNR range of 25-30 dB-Hz, the rms error in the Doppler 

estimation lies in the range of 4-15 Hz corresponding to a velocity estimation error 

range of 0.8 to 3 m/s. The DLS-EKF algorithm also provides the carrier phase estimate. 

The modulo-2~ phase-estimation error is plotted in Figure 12, from which it is clear that 

the algorithm is capable of coherent data detection with small probability of error if the 

CNR is higher than 25 dB-Hz. In fact, as shown in Figure 15, the algorithm provides 

good estimates of pseudo-range (related to the absolute phase error via (25)) up to a 
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CNR of about 23 dB at which point the rms error is less than 4 m. The rms pseudo 

range error is less than 1 m for CNRs higher than 25.5 dB-Hz. 

The corresponding results for the performance of DLS-EKF algorithm in the presence 

of data modulation are presented in Figure 13-15. For this case a minimum threshold 

of 23.8 dB is obtained for N = 10 which is about 1 dB higher than for the case of no 

data modulation. In terms of rms estimation errors, for a CNR range of about 25-30 

dB-Hz, the rms frequency estimation error lies in a range of 8-20 Hz corresponding to 

a velocity error of about 1.5 to 4 m/s. For this case, as is apparent from Figure 15, the 

pseudo-range estimation errors are also higher and for a CNR range of 25-30 dB-Hz lie 

in a range of 0.3-6 m. Notice, however, that no sharp threshold is observed in either 

the frequency or phase estimation errors over the entire range of CNR between 22-30 

dB-Hz considered in the simulations. 
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7. COMPARISON WITH PREVIOUS TECHNIQUES 

For the case of no data modulation, we compare the performance of the proposed al- 

gorithm with some of the techniques analyzed in [14] in terms of their performance when 

tracking exactly the same high dynamic trajectory. Compared to a more computation- 

intensive maximum likelihood estimate (MLE) of [14], we observe that the DLS-EKF 

algorithm requires about 0.25 dB smaller CNR than MLE in terms of threshold. In 

terms of rms frequency estimation errors, the MLE achieves an rms error between 8 Hz 

to 35 Hz at a CNR of 23 dB-Hz depending upon the estimation delay ranging between 

30-80 samples (higher delay provides smaller error). The DLS-EKF algorithm provides 

an error of 35 Hz for a delay of 5 samples at a CNR of 23 dB-Hz. The MLE algorithm 

does not provide any phase estimate. Compared to single stage EKF algorithm, we 

observe that the DLS-EKF algorithm is about 1.5-2.0 dB better in terms of threshold 

depending upon the value of exponential data weighting coefficient and the filter order 

used in the simulations of [14]. In terms of RMS errors, the performance is similar to 

that of third order EKF alone. Notice, however, that direct comparison with the results 

of [14] may be somewhat misleading. This is so because while the DLS-EKF algorithm 

includes all of the sequences in the computation of rms error above 25.5 dB-Hz, EKF 

rejects about 5% of the worst sequences, as the probability of losing lock is about .05 at 

CNR of 25.5 dB-Hz. For the case of cross product AFC loop of [14], the threshold lies in 

a range of 25-28 dB-Hz depending upon the loop parameters. Thus, the DLS-EKF algo- 

rithm is superior by 2-5 dB-Hz compared to AFC loop. AFC loop provides a minimum 

rrns frequency error of 25 Hz at a CNR of 28 dB-Hz compared to a minimum of 5 Hz 
achieved for the DLS-EKF algorithm for the same CNR. Notice that in an AFC loop, the 

parameters achieving a relatively low estimation error are different than those yielding 

low thresholds and thus, a range of loop parameters must be considered for proper 

comparison. In terms of rms phase error the performance of the DLS-EKF algorithm is 

similar to EKF alone. In terms of computations the DLS-EKF algorithm of the publi- 
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cation requires about the same number of computations as for a fourth-order EKF but 

about twice as many computations as a third-order EKE The number of computations 

are at  least an order of magnitude smaller than the MLE. 

For the case when the data modulation is present, we compare the performance of 

the DLS-EKF algorithm with the MLE algorithm of [7], where a somewhat less severe 

GPS trajectory is analyzed. The results of E71 show a marked threshold of about 30 

dB-Hz in terms of CNR compared to 24 dB-Hz for the proposed algorithm. Thus, 

the proposed algorithm results in a 6-dB reduction in terms of threshold compared 

to previous schemes of the literature. Above threshold both the DLS-EKF and MLE 

algorithms have similar values for rms range estimation and range rate estimation errors 

(minor differences result due to differences in the trajectories). In terms of computations 

both of the algorithms are comparable. In terms of threshold on CNR, the DLS algorithm 

is very close to the composite DLS-EKF algorithm. However, in terms of rms frequency 

estimation errors, it has significantly higher estimation errors. In those cases where 

higher estimation errors are acceptable, one may apply the DLS algorithm by itself, as 

it requires only one-half of the computations required by the DLS-EKF algorithm. 
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8. CONCLUSIONS 

This publication has presented a novel multistage estimation scheme for the effi- 

cient estimation of the phase and frequency of a very high dynamic signal, which may 

possibly be phase modulated by unknown binary data and is received under relatively 

low carrier-to-noise power ratio conditions. The proposed scheme is of very general 

nature and has much wider scope than the applications in this publication. For a very 

important application considered in this publication, the algorithm has been special- 

ized to have just two stages. The first stage of the estimation scheme is a least-squares 

algorithm operating upon the differential signal model while the second stage is an 

extended Kalman filter of third order. For the very high dynamic GPS trajectories, 

the proposed algorithm has been shown to significantly outperform the previous algo- 

rithms of the literature in one or more aspects, including threshold on CNR, estimation 

errors, availability of phase estimates and thus the estimate of pseudo-range, compu- 

tational complexity, and flexibility. For the case of no data modulation, the proposed 

scheme has a threshold that is slightly lower than the more computation-intensive im- 

plementation of MLE algorithm. When compared to just the EKF operating by itself, 

the proposed DLS-EKF scheme provides from about 1.5- to 2-dB reduction in threshold. 

In comparison to more conventional schemes, such as AFC loops, the performance is 

even better. 

For the case when an unknown data modulation is present, the algorithm provides 

an improvement of 6 dB in terms of threshold on CNR in comparison to the MLE scheme 

of [7] specifically proposed for such applications. In addition to phase and frequency 

estimates, the algorithm can provide estimates of frequency derivative as well, although 

not presented in this publication. The scheme being of a very general nature, it may 

be possible to reduce the threshold even further by using a higher dimension for the 

state vector related to the higher number of terms in the Taylor series expansion in 

arriving at the signal model for the first stage DLS algorithm. Further improvements 
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are possible by the application of more optimum sampling techniques as proposed in 

[Ill. The performance may also be improved both in terms of the threshold and the 

rms estimation errors by increasing the number of stages to three or more. 
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Figure 4. A Multistage Estimator for the Process eI(t) 
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Figure 14. Rh4S Frequency Estimation Error vs CNR; DLSEKF Algorithm in the Presence of 
Data Modulation 
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Figure 15. RMS Pseudo-Range Estimation Error vs CNR for DLS-EKF Algorithm; (With and Without 
Data Modulation) 
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